
OBJECT-ORIENTED SCIENTIFIC
P R O G R A M M I N G WITH FORTRAN 90

Charles D. Norton*

National Research Council, U.S.A
E-Mail: Charles.D.Norton@jpl.nasa.gov

Abstract: Fortran 90 is a modern language that introduces many impor-
tant new features beneficial for scientific programming. While the array-syntax
notation has received the most attention, we have found that many modern
softaware development techniques can be supported by this language, including
object-oriented concepts.

While Fortran 90 is not a full object-oriented language it can directly sup-
port many of the important features of such languages. Features not directly
supported can he emulated by software constructs. It is backward compatible
with Fortran 77, and a subset of HPF, so new concepts can be introduced into
existing programs in a controlled manner. This allows experienced Fortran 77
programmers to modernize their software, making it easier to understand, mod-
ify, share, explain, and extend.

We discuss our experiences in plasma particle simulation and unstructured
adaptive mesh refinement on supercomputers, illustrating the features of For-
tran 90 that support the object-oriented methodology. All of our Fortran 90
programs achieve high performance with the benefits of modern abstraction
modeling capabilities.

*Currently in residence at the National Aeronautical and Space Administration’s Jet Propul-
sion Laboratory, California Institute of Technology, U.S.A.

1

mailto:Charles.D.Norton@jpl.nasa.gov

2

Keywords: Fortran 90, Supercomputing, Object-Oriented, Adaptive Mesh Re-
finement, Scientific Programming, Plasma Physics.

1.1 INTRODUCTION

Scientific application programming involves unifying abstract physical concepts
and numerical models with sophisticated programming techniques that require
patience and experience to master. Furthermore, codes typically written by sci-
entists are constantly changing to model new physical effects. These factors can
contribute to long development periods: unexpected errors, and software that
is difficult to comprehend, part,icularly when multiple developers are involved.

The Fortran 90 programming language (Ellis et al., 1994) addresses the
needs of modern scientific programming by providing features that raise the
ievei of abstraction, without sacrificing performance. Consider a 3D parallel
plasma particle-in-cell (PIC) program in Fortran 77 which will typically define
the particles, charge density field, force field, and routines to push particles
and deposit charge. This is a segment of the main program where many details
have been omitted.

dimension part(idimp, npmax), q(nx, ny. nzpmx)
dimension fx(nx, ny, nzpmx), fy(nx, ny, nzpmx), fz(nx, ny, nzpmx)
da.ta, qme, dt, /-1.?.2/
call push(part,fx,fy,fz,npp,qtme,dt,wke,nx,ny,npmax,nzpmx, ...)
call dpost(part,y,npp.noff,qme,nx,ny,idimp,npmax,nzpmx)

Note that the arrays must be dimensioned at compile-time. Also parameters
must either be passed by reference, creating long argument lists, or kept in
common and exposed to inadvertent modification. Such an organization is
complex to maintain, especially as codes are modified for new experiments.

Using the new features of Fortran 90, abstractions can be introduced that
clarify the organization of the code. The Fortran 90 version is more readable
while designed for modification a,nd extension.

use partitionmodule ; use plasmamodule
type (species) :: electrons
type (scalarfield) :: charge-density
type (vectorfield) :: efield
type (slabpartition) :: edges
real :: dt = .2
call plasma-particle-push(electrons, efield, edges, dt)
call plasma-deposit-charge(electrons, cha.rge-density, edges)

This style of object-oriented programming, where the basic data unit is an
“object” that shields its internal data from misuse by providing public routines
to manipulate it, allows such a code to be designed and written. Object-
Oriented programming clarifies software while increasing safety and communi-

00 FORTRAN 90 PROGRAMMING 3

cation among developers, but its benefits are only useful for sufficiently large
and complex programs.

While Fortran 90 is not an object-oriented language, the new features allow
most of these concepts to be modeled directly. (Some concepts are more com-
plex to emulate.) In the following, we will describe how object-oriented concepts
can be modeled in Fortran 90, the application of these ideas to plasma PIC pro-
gramming on supercomputers, parallel unstructured adaptive mesh refinement,
and the future of Fortran programming (represented by Fortran 2000) that will
contain explicit object-oriented features.

1.2 MODELING OBJECT-ORIENTED CONCEPTS IN FORTRAN 90

Object-Oriented programming (OOP) has received wide acceptance, and great
interest, throughout the computational science community as an attractive ap-
proach to address the needs of modern simulation. Proper use of OOP ensures
that, programs can be written safely, since the internal implementation details
of the data objects are hidden. This allows the internal structure of objects
and t>heir operations to be modified (to improve efficiency perhaps), but t,he
overall structure of the code using the objects can remain unchanged. In other
words, objects are an encapsulation of da,ta and rout,ines.

These objects represent abstractions. another important concept is the
notion of inheritance, which allows new abstractions to be creaked by preserv-
ing features of existing abstractions. This allows objects to gain new features
through some form of code reuse. Additionally, polymorphism allows routines
t,o be applied to a variety of objects that share some relationship, but the spe-
cific action taken varies dynamically based on the object’s type. These ideas
are mechanisms for writing applications that more closely represent the prob-
lem at hand. As a result, a number of programming languages support OOP
concepts in some manner.

Fortran 90 is well-known for introducing array-syntax operations and dy-
namic memory management. While useful, this represents a small subset of
t,he powerful new features available for scientific programming. Fortran 90 is
backward compatible with Fortran 77 and, since it is a subset of High Perfor-
mance Fortran (HPF), it provides a migration path for data-parallel program-
ming. Fortran 90 type-checks parameters to routines, so passing the wrong
arguments to a function will generate a compile-time error. Additionally, the
automatic creation of implicit variables can be suppressed reducing unexpected
results.

However, more powerful features include derived-types, which allow user-
defined types to be created from existing intrinsic types and previously defined
derived-types. Many forms of dynamic memory management operations are
now available, including dynamic arrays and pointers. These new Fortran 90
constructs are objects that know information such as their size, whether they
have been allocated, and if they refer to valid data. Fortran 90 modules allow
routines to be associated with types and data defined within the module. These
modules can be used in various ways, to bring new functionality to program

units. Component,s of the module can be private and/or public allowing in-
terfaces to be constructed that control the accessibility of module components.
Additionally, operator and routine overloading are supported (name reuse), al-
lowing the proper routine to be called automatically based on the number and
types of the arguments. Optional arguments are supported, as well as generic
procedures that allow a single routine name to be used while the action taken
differs based on the type of the parameter. All of these features can be used to
support an object-oriented programming methodology (Decyk et al., 1997a).

1.3 APPLICATION: PLASMA PIC PROGRAMMING ON
SUPERCOMPUTERS

Computer simulations are very useful for understanding and predicting the
transport of particles and energy in fusion energy devices called tokamaks
(Birdsall and Langdon, 1991). Tokamaks, which are toroidal in shape, con-
fine the plasma with a combination of an external toroidal magnetic field and
a. self-generated poloidal magnetic field. Understanding plasma confinement in
tokamaks could lead to the practical development of fusion energy as an al-
ternative fuel source---unfortunately confinement is not well understood and is
worse than desired.

PIC codes integrate the trajectories of many particles subject to electro-
magnetic forces, both external and self-generated. The General Concurrent
PIC Algorithm (Liewer and Decyk, 1989), which partitions particles a.nd fields
among the processors of a distributed-memory supercomputer, can be pro-
grammed using a single-program multiple-data (SPMD) design approach. Al-
though the Fortran 77 versions of these programs have been well-benchmarked
and are scalable with nearly 100% efficiency, there is an increasing interest
within the scientific community to apply object-oriented principles to enhance
new code development.

In the introduction, we illustrated how Fortran 77 features could be modeled
using Fortran 90 constructs. In designing the PIC programs, basic constructs
like particles (individually and collectively), fields (scalar and vector, real and
complex), distribution operations, diagnostics, and partitioning schemes were
created as abstractions using Fortran 90 modules. Fortran 90 objects are de-
fined by derived types within modules where the public routines that operate
on these objects are visible whenever the object is “used”. (The private com-
ponents of the module are only accessible within module defined routines.)

A portion of the species module (Figure 1.1) illustrates how data and routines
can be encapsulated using object-oriented concepts. This module defines the
particle collection, where the interface to the particle Maxwellian distribution
routine is included.

Some OOP concepts, such as inheritance, had limited usefulness while run-
time polymorphism was used infrequently. Our experience has shown that these
features, while sometimes appropriate for general purpose programming, do not
seem to be as useful in scientific programming. Well-defined interfaces, that
support manipulation of abstractions, were more important. More details on

00 FOHrRAN 90 PROGRAMMIKG 5

Figure 1.1 Abstract of Fortran 90 module for particle species.
module species-module

use distributionmodule ; use partitionmodule
implicit none
type particle

private
real :: x, y, z, vx, vy, vz

end type particle
type species

real :: qm, qbm, ek
integer :: nop, npp
type (particle), dimension(:), pointer :: p

end type species

subroutine species-distribution(this, edges, distf)
type (species). intent (out) :: this
type (sla,bpartition), intent (in) :: edges
type (dist,fcn), intent (in) :: distf

contains

! subrout>ine body
end subroutine species-distribution
! a,dditional member routines ...

end module speciesmodule

the overall structure of the code can be found in (Norton et al., 1995; Norton
et ai., 1997j.

The wall-clock execution times for the 3D parallel PIC code written in For-
tran 90, Fortran 77, and C++ are illustrated in Table 1.1. Although our
experience has been that Fortran 90 continually outperforms C++ on com-
plete programs, generally by a factor of two, others have performance results
that indicate that C++ can sometimes outperform Fortran 90 on some com-
putational kernels (Cary et al., 1997). (In t,hese cases, “expression templates”
are introduced as a compile-time optimization to speed up complicated array
operations.)

Table 1.1 3 0 Parallel Plasma PIC Experiments on the Cornell Theory Center IBM SP2
(32 Processors, 8M Particles, 260K Grid Points).

I Language 1 Compiler 1 P2SC Super Chips 1 P2SC Optimized 1
Fortran 90

1173.31s 1316.20s KAI KCC C++
537.95s 668.03s IBM xlf Fortran 77
488.88s 622.60s IBM xIf90

6

The most aggressive compiler options produced the fastest timings. seen
in Table 1.1. The KAI C++ compiler with +K3 -03 -abstract-pointer spent
over 2 hours in the compilation process. The IBM F90 compiler with - 0 3
-qlanglvl=90std -qstrict -qalias=noaryovrlp used 5 minutes for compilation.
(The KAI compiler is generally considered the most efficient C++ compiler
when objects are used. This compiler generated slightly faster executables
than the IBM C++ compiler.) Applying the hardware optimization switches
-qarch=pwr2 -qtune=pwr2 introduced additional performance improvements
specific to the P2SC processors.

We ha,ve found Fortran 90 very useful, and generally safer with higher per-
formance than C++ and sometimes Fortran 77, for large problems on super-
computers. Fortran 90 derived-type objects improved cache utilization, for
large problems, over Fortran 77. (The C++ and Fortran 90 objects had the
same storage organization.) Fortran 90 is less powerful than C++, since it has
fewer features and those available can be restricted to enhance performance,
but many of the advanced features of C++ have not been required in scientific
computing. Nevertheless, advanced C++ feahres may be more appropriate for
other problem domains (Decyk et al., 1997b; Norton et al., 1997).

1.4 APPLICATION: PARALLEL UNSTRUCTURED ADAPTIVE MESH
REFINEMENT

Adaptive mesh refinement is an advanced numerical technique very useful in
solving partial differential equations. Essentially, adaptive techniques utilize
a descretized computational domain that is subsequently refined/coarsened in
areas where additional resolution is required. Parallel approaches are necessary
for large problems, but the implementation strategies can be complex unless
good design techniques are applied.

One of the major benefits of Fortran 90 is that codes can be structured using
the principles of object-oriented programming. This allows the development of
a parallel adaptive mesh refinement (PAMR) code where interfaces can be de-
fined in terms of mesh components: yet the internal implementation details are
hidden. These principles also simplify handling interlanguage communication,
sometimes necessary when additional packages are interfaced to new codes. Us-
ing Fortran 90’s abstraction techniques: for example, a mesh can be loaded into
the system, distributed across the processors, the PAMR internal data struc-
ture can be created, and the mesh can be repartitioned and migrated to new
processors (all in parallel) with a few simple statements as shown in Figure 1.2.

A user could link in the routines that support parallel adaptive mesh re-
finement then, as long as the data format from the mesh generation package
conforms to one of the specified formats; the capabilities required for PAMR
are available. We now describe the Fortran 90 implementation details that
make this possible.

00 FORTRAN 90 PROGRAMMING 7

Figure 1.2 A main program with selected PAMR library calls.
program pamr
use mpi-module ; use mesh-module ; use miscmodule
implicit none
integer :: ierror
chara,cter(len=8) :: input-meshfile
type (mesh) :: inmesh
call MPI-INIT(ierror)

input-mesh-file = meshname(iam)
call mesh..createincore(in-mesh, input-meshfile)
call mesh-repartition(inmesh)
call mesh-visualize(inmesh, "visfile.plt")

call MPI-FINALIZE(ierror)
end program pamr

1.4.1 Basic Mesh Definibjon

Fortran 90 modules allow data types to be defined in combination with related
routines. In our system the mesh is described, in part, as shown in Figure 1.3.
In two-dimensionsl the mesh is a Fortran 90 object containing nodes, edges, el-
ements, and reference informat,ion about non-local boundary elements (r-indx).
These components are dynamic; their size can be determined using Fortran 90
intrinsic operations. They are also private, meaning that the only way to ma-
nipulate the components of the mesh are by routines defined within the module.
Incidentally, the remote index type r indx (not shown) is another example of
encapsulation. Objects of this type are defined so that they cannot be created
out,side of the module at all. A module can contain any number of derived
types with various levels of protection, useful in our mesh data structure im-
p1ement)ation strategy.

All module components are declared private, meaning that none of its com-
ponents can be referenced or used outside the scope of the module. This en-
capsulation adds safety to the design since the internal implementation details
are protected, but it is also very restrictive. Therefore, routines that must be
available to module users are explicitly listed as public. This provides an inter-
face to the module features available as the module is used in program units.
Thus, the statement in the main program from Figure 1.2:

call mesh-createincore(in-mesh, input-mesh-file)

is a legal statement since this routine is public. However the statement:

element-id = in-mesh%elements(lO)%id

is illegal since the "elements" component of in-mesh is private to the derived
type in the module.

8

Figure 1.3 Skeleton view of mesh-module components.
module meshmodule
use mpi-module ; 71se heapsortmodule
implicit none
private
public :: mesh-createincore, mesh-repartition, &

integer, parameter :: mesh_dim=2, nodes-=3, edges-=3, neigh-=3
t'ype element

mesh-visualize

private
int,eger :: id, nodeix(nodes-), edgeix(edges-), &

neighix(neigh-)
end type element
type mesh

private
type(node), dimension(:), pointer :: nodes
tgpe(edge), dimension(:), pointer :: edges
type(element), dimension(:), pointer :: elements
type(r-indx), dimension(:), pointer :: boundary-elements

end type mesh
conta.ins

subroutine mesh-createincore(this, mesh-file)
type (mesh): intent(inout) :: this
character(len=*), intent(in) :: meshfile

end subroutine mesh-createincore
! additional member routines ...

! details omitked ...

end module mesh-module

The mesh-module uses other modules in its definition, like the mpimodule
and the heapsortmodule. The mpi-moduIe provides a Fortran 90 interface to
MPI while the heapsortmodule is used for efficient construction of the dis-
tributed mesh data structure. The routines defined within the contains state-
ment, such as mesh-createincore(), belong to the module. This means that
routine interfaces, that perform type matching on arguments for correctness,
are created automatically. (This is similar to function prototyping in other
languages.)

1.4.2 Distributed structure organization

When the PA4MR mesh data structure is constructed it is actually distributed
across the processors of the parallel machine. This construction process consists
of loading the mesh data, either from a single processor for parallel distribu-
tion (in-core) or from individual processors in parallel (out-of-core). A single
mesh-build routine is responsible for constructing the mesh based on the data

00 FORTRAN 90 PROGRAMMING 9

provided. Fortran 90 routine overloading and optional arguments allom7 multi-
ple interfaces to the mesh-build routine, supporting code reuse. This is helpful
because the same code that builds a distributed PAMR mesh data structure
from the initial description can be applied to rebuilding the data structure after
refinement and mesh migration. The mesh-build routine, and its interface, is
hidden from public use. Heap sorting techniques are also applied in building
the hierarchical structure so that reconstruction of a distributed mesh after
refinement and mesh migration can be performed from scratch, but efficiently.

The main requirement imposed on the distributed structure is that every
element knows its neighbors. Local neighbors are easy to find on the current
processor from t,he PAMR structure. Remote neighbors are known from the
boundary-elements section of the mesh data structure, in combination with a
neighbor indexing scheme. When an element must act on it,s neighbors tJhe
neighbor index structure will either have a. reference to a complete description
of the local neighbor element or a reference to a processorid/globalid pairing.
This pairing can be used to fetch any data required regarding the remote ele-
ment neighbor. (Note that partition boundary data, such as a boundary face in
three-dimensions, is replicated on processor boundaries.) One of the benefits
of this scheme is that any processor can refer to a specific part of the data
structure to access its complete list of non-local elements.

Figure 1.3 showed the major components of the mesh data structure, in
t,wo-dimensions. While Fortran 90 fully supports linked list structures using
pointers, a common organization for PAMR. codes, our system uses pointers to
dynamica.lly allocated arrays instead. There are a number of reasons why this
organization is used. By using heap sorting methods during data structure con-
struction, the array references for mesh components can be constructed very
quickly. Pointers consume memory, and the memory references can become
"unorganized" , leading to poor cache utilization. While a pointer-based orga-
nization can be useful, we have ensured that our mesh reconstruction methods
are f a t enough so that the additional complexity of a pointer-based scheme
can be avoided.

1.4.3 Interfacing among data structure components

The system is designed to make interfacing among components very easy. Usu-
ally, the only argument required to a PAMR public system call is the mesh
itself, as indicated in Figure 1.2. There are other interfaces that exist how-
ever, such as the internal interfaces of Fortran 90 objects with MPI and the
ParMeTiS parallel partitioner (Karypis et al., 1997) which were written in the
C programming language.

Since Fortran 90 is backward compatible with Fortran 77 it is possible to
link to MPI for interlanguage communication, assuming that the interface dec-
larations have been defined in the mpih header file properly. While certain
array constructs have been useful, such as array syntax and subsections, MPI
does not support Fortran 90 directly so array subsections cannot, be (sa,fely)
used as parameters to the library routines. Our system uses the ParMeTiS

graph partitioner to repartition the mesh for load balancing. In order to com-
municate with ParMeTiS our system internally converts the distributed mesh
into a. distributed graph. A single routine interface to C is created that passes
the graph description from Fortran 90 by reference. Once the partitioning is
complete, this same interface returns from C an array that describes the new
partitioning to Fortran 90. This is then used in the parallel mesh migration
stage to balance mesh components among the processors.

1.4.4 Interfacing among C and Fortran 90 for mesh migration

ParMeTiS only returns information on the mapping of elements to (new) pro-
cessors: it can not actually migrate elements across a parallel system. Our
parallel mesh migration scheme reuses the efficient mesh-build() routine to con-
struct the new mesh from the ParMeTiS repartitioning. During this mesh-build
process the element information is migrat,ed according to this partitioning.

Figure 1.4 A main program with selected PAMR library calls.
subroutine mesh-repartition(this)
type (mesh), intent(inout) :: this

! statements omitted ...
call PARMETIS(mesh-adj, mesh-repart, nelem, nproc, iam) ! C
call mesh-build(this, newmeshrepart=meshrepart)

end subroutine mesh-repartition

As seen in Figure 1.4, information required by the ParMeTiS partitioner
is provided by calling a Fortran 90 routine that converts the mesh adjacency
structure into ParMeTiS format (hidden). When this call returns from C, the
private mesh-build() routine constructs the new distributed mesh from the old
mesh and the new repartitioning by performing mesh migration. Fortran 90 al-
lows optional arguments to be selected by keyword. This allows the mesh-build
routine to serve multiple purposes since a keyword can be checked to determine
if migration should be performed as part of the mesh construction process:

subroutine mesh-build(this, mesh-file, new-meshrepart, in-core)
integer, dimension(:), intent(in), optional :: new-meshrepart
logical, intent(in), optional :: in-core
! statements omitted ...

if (present(new-meshrepart)) then
! perform mesh migration ...

end if
! (re)construct the mesh independent of input format ...

end subroutine mesh-build

This is another way in which the new features of Fortran 90 add robustness
to the code design. The way in which t,he new mesh data is presented, either
from a file format or from a repartitioning, does not matter. Once the data in

00 FORTRAN 90 PROGRAMMING 11

organized in our private internal format the mesh can be reconstructed by code
reuse.

1.4.5 Design Applications

The AMR library routines have been applied to the finite-element simulation of
electromagnetic wave scattering in a waveguide filter, as well as long-wavelength
infrared radiation in a quantum well infrared photodetector. Future applica-
tions may include micro-gravity experiments and other appropriate applica-
tions. This software runs on the Cray T3E, HP/Convex Exemplar, IBM SP2,
and Beowulf-class pile-of-pc’s running the LINUX operating system.

1.5 DO SCIENTIFIC PROGRAMS BENEFIT FROM
OBJECT-ORIENTED TECHNIQUES?

Many of the benefits of object-oriented programming are probably most> suited
only for very large programs--typically programs larger than many scientific
programmers are involved in-perhaps hundreds of thousands of lines. Never-
theless, most principles can be applied for smaller and medium scale efforts.
We have applied these techniques in an experimental way on skeleton programs,
but the effort addresses principles that will affect large scale development.

Object,-Oriented design will not solve every problem, but it does force one
to consider issues that normally might be ignored. This includes defining ab-
stractions clearly, their relationships, and organization for extension to new
problems. This increases the development time for an initial project, but hope-
fully reduces the effort in constructing new related projects.

One must question if the highly promoted benefits are real. Since scientific
applications contain components that work together to solve complex prob-
lems, encapsulation and modularity promote good designs for these programs.
The clarifies understanding, allows modifications to be introduced in an con-
trolled manner, increases safety, and supports the work of multiple contributors.
Some features, like subtyping inheritance and dynamic polymorphism are good
object-oriented principles, but their general usage in scientific applications was
very limited, or non-existent, in our experience. Some research has been per-
formed in measuring the performance effects of constructs used in an object-
oriented fashion in C++ and Fortran 90 (Cary et al., 1997; Norton, 1996).
However, more work is needed before performance can be a deciding factor in
language selection, all other factors being relatively equal. Modern applica-
tions are growing more complex, hence object-oriented techniques can clarify
their organization, but this does not imply that all aspects of the paradigm are
necessary.

We have experienced increased software safety, understandability by abstrac-
tion modeling, Fortran 77 level performance, and the modernization of existing
programs without redevelopment in a new language. The modern features of
Fortran 90 are redefining the nature of Fortran-based programming, although
much interest is focused on comparing Fortran 90 and C++ for scientific pro-

12

gramming (Cary et al., 1997; Decyk et al., 1997b; Norton, 1996). New project,s
may be considering one of these languages, existing projects may reconsider
their decision to adopt C++ or Fortran 90, and current projects may consider
migration to the “other” language. Most of this activity grew from a realiza-
tion of the new features Fortran 90 makes available as well as the continual
improvement in C++ compiler technology. Scientific programming can benefit
from object-oriented techniques.

1.6 CONCLUSION

The use of object-oriented concepts for Fortran 90 programming is very benefi-
cial. The new features add clarity and safety to Fortran programming allowing
computational scientists to advance t,heir research, while preserving their in-
vestment in existing codes.

Our web site provides many additional examples of how object-orient,ed con-
cepts can be modeled in Fortran 90 (Xorton et al., 1996). Many concepts, like
encapsulation of data and routines can be represented directly. Other features,
such as inheritance and polymorphism, must be emulated with a combination
of Fortran 90’s existing features and user-defined constructs. (Procedures for
doing this are also included at the web site.) Additionally, an evaluation of
compilers is included to provide users with an impartial comparison of prod-
ucts from different vendors.

The Fortran 2000 standard has been defined to include explicit object-
oriented features including single inheritance, polymorphic objects, parame-
terized derived-types, constructors, and destructors. Other features, such as
interoperability with C will simplify support for advanced graphics within For-
tran 2000.

Parallel programming with MPI and supercomputers is possible with For-
tran 90. However, MPI does not explicitly support Fortran 90 style arrays, so
structures such as array subsections cannot be passed to MPI routines. The
Fortran 90 plasma PIC programs were longer than the Fortran 77 versions
(but more readable), and much shorter than the C++ programs because fea-
tures useful for scientific programming are not automatically available in C++.
Also, the portability of the Fortran 90 parallel adaptive mesh refinement system
among various machines and compilers was excellent compared to difficulties
experienced with portability of C++ programs among compilers and machines.

Acknowledgments

This work was supported by a National Research Council Resident Research As-
sociateship at the National Aeronautical and Space Administration Jet Propulsion
Laboratory, California Institute of Technology. Additional support was received by
the NASA Office of Space Science and the Cornel1 Theory Center for access to the
Cray T3E and IBM SP2 respectively. We also appreciate the support of Tom A.
Cwik, Viktor K. Decyk, Robert D. Ferraro; John Z. Lou, and Boleslaw K. Szymanski
in this research.

00 FORTRAN 90 PROGRAMMING 13

References

Birdsall, C. K. and Langdon, A. B. (1991). Plasma Physics via Computer Szmu-
lation. The Adam Hilger Series on Plasma Physics. Adam Hilger, New York.

Cary, J. R,., Shasharina, S. G., Cummings, J . C., Reynders, J. V. W., and
Hinker, P. J. (1997). Comparison of C++ and Fortran 90 for Object-Oriented
Scientific Programming. Computer Physics Communications, 105:20-36.

Decyk, V. K., Norton, C. D., and Szymanski, B. K. (1997a). Expressing Object-
Oriented Concepts in Fortran 90. ACM Fortran Forum, 16(1):13-18.

Decyk, V. K., Korton, C. D., and Szymanski, B. K. (199713). How tfo E,x-
press C++ Concepts in Fortran 90. Technical Report PPG-1569, Institute
of Plasma and Fusion Research, UCLA Dept. of Physics and Astronomy, Los
Angeles, CA 90095-1547.

Ellis, T . M. R., Philips, I. R., and Lahey, T. M. (1994). Fortran. 90 Programming.
Addison-Wesley, Reading, MA.

Karypis, G., Schloegel, K., and Kumar, V. (1997). ParMeTiS: Parallel Graph
Partitioning and Sparse Matrix Ordering Library Version 1.0. Technical re-
port, Dept. of Computer Science, 1;. Minnesota.

Liewer, P. C. and Decyk, V. K. (1989). A General Concurrent Algorithm
for Plasma Particle-in-Cell Simulation Codes. <J. of Computational Physic.s,

Nort,on, C. D. (1996). Object Oriented Programming Paradigms in Scien,tijic
Computing. PhD thesis, Renssleaer Polytechnic Institute, Troy, New York.
UMI Company.

Norton, 6 . D., Decyk, V. K., and Szymanski, B. K. (1996). High Perfor-
mance Object-Oriented Programming in Fortran 90. Internet Web Pages.
http://www.cs.rpi.edu/xszymansk/oof90.htrnl.

Norton, 6. D., Decyk, V. K., and Szymanski, B. K. (1997). High Performance
Object-Oriented Scientific Programming in Fortran 90. In M. Heath, et. al,
editor, Proc. Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN. CD-ROM.

Norton, 6 . D., Szymanski, B. K.; and Decyk, V. K. (1995). Object Oriented
Parallel Computation for Plasma Simulation. Communications of the ACM,

85:302-322.

38(10):88-100.

